PROBLEM BASED ON

GRAVITATION

Question

A satellite of mass 200 kg orbits the earth at a height of 400 km above the surface. How much energy must be expended to rocket the satellite out of the earth's gravitational influence?

SOLUTION:

Given:
Mass of the satellite,

$$
m=200 \mathrm{~kg}
$$

Height of the satellite,
$x=400 \mathrm{~km}$
$=0.4 \times 10^{6} \mathrm{~m}$

As we know,

Mass of the earth, $M=6.0 \times 10^{24} \mathbf{k g}$; Radius of the earth, $R=6.4 \times 10^{6} \mathrm{~m}$

Gravitational Constant,

$$
\mathrm{G}=6.67 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}
$$

When a satellite is orbiting around the earth, it possess kinetic energy, K.E. $=\frac{1}{2} \boldsymbol{m} \boldsymbol{v}^{2}$
v is the orbital velocity of a satellite which keeps the satellite into its orbit around the earth i.e.

$$
v=\sqrt{\frac{G M}{(R+x)}}
$$

Then, kinetic energy becomes, K.E. $=\frac{G M m}{2(R+x)}$

Potential energy of the satellite due to its position in the gravitational field of earth at a height x above the surface of earth is given by

$$
\mathrm{U}=-\frac{G M m}{(R+x)}
$$

Here negative sign shows the attractive force due to earth on the satellite.

Total energy of the satellite at height x ,

$$
\begin{aligned}
& \mathrm{E}=\mathrm{K} . \mathrm{E} .+ \text { P. } \mathrm{E} . \\
& \mathrm{E}=\frac{G M m}{2(R+x)}+\left(-\frac{G M m}{(R+x)}\right) \\
& \mathrm{E}=-\frac{G M m}{2(R+x)}
\end{aligned}
$$

Here, negative sign shows that satellite is bound to earth. This is called bound energy of the satellite.

Now, substituting all the values in total energy of the satellite,

$$
\begin{aligned}
E & =-\frac{G M m}{2(R+x)} \\
& =-\frac{6.67 \times 10^{-11} \times 6.0 \times 10^{24} \times 200}{2 \times\left(6.4 \times 10^{6}+0.4 \times 10^{6}\right)} \\
& =-\frac{6.67 \times 6.0 \times 2 \times 10^{15}}{2 \times 6.8 \times 10^{6}} \\
& =-5.89 \times 10^{9} \mathrm{~J}
\end{aligned}
$$

To free the satellite from the earth's gravitational field, negative of the total energy of the orbiting satellite has to be supplied.

$$
\text { Binding energy }=-\left(-5.89 \times 10^{9}\right)
$$

$$
=5.89 \times 10^{9} \mathrm{~J}
$$

Thus, $5.89 \times 10^{9} \mathrm{~J}$ energy must be expended to rocket the satellite out of the earth's gravitational influence.

